Central Pattern Generator for Locomotion: Anatomical, Physiological, and Pathophysiological Considerations
نویسنده
چکیده
This article provides a perspective on major innovations over the past century in research on the spinal cord and, specifically, on specialized spinal circuits involved in the control of rhythmic locomotor pattern generation and modulation. Pioneers such as Charles Sherrington and Thomas Graham Brown have conducted experiments in the early twentieth century that changed our views of the neural control of locomotion. Their seminal work supported subsequently by several decades of evidence has led to the conclusion that walking, flying, and swimming are largely controlled by a network of spinal neurons generally referred to as the central pattern generator (CPG) for locomotion. It has been subsequently demonstrated across all vertebrate species examined, from lampreys to humans, that this CPG is capable, under some conditions, to self-produce, even in absence of descending or peripheral inputs, basic rhythmic, and coordinated locomotor movements. Recent evidence suggests, in turn, that plasticity changes of some CPG elements may contribute to the development of specific pathophysiological conditions associated with impaired locomotion or spontaneous locomotor-like movements. This article constitutes a comprehensive review summarizing key findings on the CPG as well as on its potential role in Restless Leg Syndrome, Periodic Leg Movement, and Alternating Leg Muscle Activation. Special attention will be paid to the role of the CPG in a recently identified, and uniquely different neurological disorder, called the Uner Tan Syndrome.
منابع مشابه
Using the Adaptive Frequency Nonlinear Oscillator for Earning an Energy Efficient Motion Pattern in a Leg- Like Stretchable Pendulum by Exploiting the Resonant Mode
In this paper we investigate a biological framework to generate and adapt a motion pattern so that can be energy efficient. In fact, the motion pattern in legged animals and human emerges among interaction between a central pattern generator neural network called CPG and the musculoskeletal system. Here, we model this neuro - musculoskeletal system by means of a leg - like mechanical system cal...
متن کاملGait Generation for a Bipedal System By Morris-Lecar Central Pattern Generator
The ability to move in complex environments is one of the most important features of humans and animals. In this work, we exploit a bio-inspired method to generate different gaits in a bipedal locomotion system. We use the 4-cell CPG model developed by Pinto [21]. This model has been established on symmetric coupling between the cells which are responsible for generating oscillatory signals. Th...
متن کاملGait Generation and Transition of a Biped Robot Based on Kinematic Synergy in Human Locomotion
Humans have an extremely redundant system for locomotion. To handle the redundancy problem, humans use coordinative structures using conditions of constraint in their joint movements to reduce the number of degrees of freedom, which is called kinematic synergy. This chapter shows some characteristics in the kinematic synergy in human locomotion and shows a locomotion control system for a biped ...
متن کاملAn amphibious robot capable of snake and lamprey-like locomotion
This article presents a project that aims at constructing a biologically inspired amphibious snake-like robot. The robot is designed to be capable of anguilliform swimming like the lamprey in water and serpentine locomotion like a snake on ground. Both the structure and the controller of the robot are inspired by elongate vertebrates. In particular, the locomotion of the robot is controlled by ...
متن کاملSimulating Adaptive Human Bipedal Locomotion Based on Phase Resetting Using Foot-Contact Information
Humans generate bipedal walking by cooperatively manipulating their complicated and redundant musculoskeletal systems to produce adaptive behaviors in diverse environments. To elucidate the mechanisms that generate adaptive human bipedal locomotion, we conduct numerical simulations based on a musculoskeletal model and a locomotor controller constructed from anatomical and physiological findings...
متن کامل